APPENDIX A
Family Background

Josiah Percival Stevens was born March 23, 1852, at his father's plantation in Liberty County, GA, near Savannah. Stevens's family background influenced his future successes. His father was a rural medical doctor and plantation owner. In this area were rice and indigo growers, whereas cotton was grown mostly further inland. Stevens's paternal grandfather, Oliver Stevens, was born March 11, 1783, in Newport, NH, and his great-grandfather, Rev. Josiah Stevens, was married to Mary Gray. They were descendants of William Stevens, one of three brothers who came from England to settle at Killingworth, CT, in 1666. Because they were English Puritans relatively new to America, this side of the family also may have also been a part of, or connected to, the group of Puritan Congregationalists who were the family of his maternal grandmother, Ann Quarterman LeConte. This Puritan group named the communities or schools they established Dorchester, after their ancestral home in England.

This may seem to be an unusual combination—Puritan and rice planter—but there were large differences (as well as some similarities) between the Mayflower group of Puritans and the southern branches. Land inheritance was one difference: The southern branch passed land equally to each child; the northern branch bequeathed only to the oldest son. This difference may have precipitated migration from New England, where during inheritance land grants were split. The move from South Carolina to Georgia possibly came because of overcrowded settlements or "born out lands in SC." The Council of Georgia was petitioned by the group and received 31,950 acres of land. Work ethic and self-sufficiency were emphasized, and education was second only to religion in importance.

Stevens's maternal grandfather was French Huguenot and his maternal grandmother was an English Puritan. Her family included many famous and learned descendants. Her father was the famous botanist Louis LeConte, originator of the LeConte crossbred pear and owner of the plantation, Woodmanston. This 3,300-acre plantation was the largest eighteenth-century inland rice plantation of its time. Today only the land and some ruined foundations remain, but restoration is in process.

Louis LeConte, b. 1782 - d. 1838, was a graduate of Columbia University and had studied medicine, botany, and the classics. In marriage, he was granted the hand of Ann Quarterman, after promising her father not to take her out of the county.

The great-grandfather of Louis LeConte was Guillaume LeConte, who arrived in New York in 1690 (see Appendixes C and D - Ancestry Charts). The family was French Huguenot and had left their homeland just after the revocation of the Edict of Nantes. Stevens never knew his maternal grandparents; Louis LeConte passed away in 1838, and his wife, Ann Quarterman LeConte, preceded him in 1826. However, this French Huguenot/English Puritan background, along with the influence of the unique Midway community, may explain Stevens's character (see notes of Stevens-LeConte family achievements in Appendix B).

Notes
3. Midway, Georgia, was an outstanding intellectual early settlement near the Atlantic coast. It was established in 1752 by South Carolina Calvinists and South Carolina Puritans who originated from Dorchester, MA. It became the “Cradle of Revolutionary Spirit in Georgia.” It can boast of two of Georgia’s three signers of the Declaration of Independence, one governor, and two Revolutionary War generals. It was a unique springboard of educated and religious pioneers (Midway brochure).
Notes: The members of Stevens's family contained many doctors, ministers, professors, and scientists. Both sides arrived in America in 1666 and 1690, respectively.

* Louis LeConte (J. P. Stevens's maternal grandfather)
 Born: Aug. 4, 1782, near Shrewsbury, NJ
 Died: Jan. 9, 1838, Liberty Co., GA
 - Graduate of Columbia College in NY (later University), Classical scholar
 - Owner of plantation Woodmanston
 - Botanist: originator of LeConte crossbred pear

* Dr. Josiah Peter Stevens (father)
 Born: Nov. 17, 1818, Sunbury, GA
 Died: Nov. 7, 1897, Lee Country, GA
 - Rural country doctor and planter

* Dr. John LeConte (uncle)
 Born: Dec. 4, 1818, Woodmanston
 Died: Apr. 29, 1891, Berkley, CA
 - Scientist, writer of many scientific articles and books
 - Professor at Franklin College (later University of Georgia)
 South Carolina College (University of South Carolina)
 - Professor of Physics at University of California
 - Elected first president of University of California

* Prof. Joseph LeConte (uncle)
 Born: Sep. 26, 1823, Woodmanston
 Died: Jul. 6, 1901, Yosemite Valley, CA
 - Geologist, cofounder of Sierra Club
 - Studied under Alexander H. Stephens in GA, and Louis Agassiz in Cambridge, MA
 - Attended College of Physicians and Surgeons in NY
 - Professor at Oglethorpe University, Franklin College, and South Carolina College
 - Professor of Geology at University of California 1869-1896

* Prof. Walker LeConte Stevens (brother)
 Born: Jun. 17, 1847, Liberty Co., GA
 Died: Dec. 29, 1927, Lexington, VA
 - Professor of Mathematics, Packer College, Brooklyn, NY
 - Professor of Physics, Rensselaer Polytechnic Institute, Troy, NY
 - Studied in Strasburg, Berlin, and Zurich
 - Professor of Physics at Washington College (later Washington and Lee University) 1898-1922
APPENDIX C—Great-Grandchildren of Guillaume LeConte (France - 1711).

APPENDIX D—Ann Quarterman (1793 - 1826)
APPENDIX E

UNITED STATES PATENT OFFICE.

JOSIAH P. STEVENS, OF ATLANTA, GEORGIA.

WATCH-REGULATOR.

Application filed March 11, 1883. (Model.)

To all whom it may concern:

Be it known that I, JOSIAH PERCY STEVENS, of Atlanta, in the county of Fulton and State of Georgia, have invented a new and useful Improvement in Watch-Regulators, of which the following is a full, clear, and exact description.

The object of my improvement is to obtain a fine and accurate adjustment of the regulating mechanism of watches; to which end my invention consists in a cam-grooved wheel or disk fitted for moving the regulator-arm, as hereinafter described and claimed.

Reference is to be had to the accompanying drawings, forming part of this specification, in which similar letters of reference indicate corresponding parts in both the figures.

Figure 1 is a face view of a watch-plate carrying the improved regulating devices, showing the regulator-arm at one extreme of its movement, and Fig. 2 is a similar view, showing the arm moved to the other extreme of its position.

A is the watch-plate, and c the pivot-bridge of the escapement-arbor, on which the regulator-arm b is fitted, as usual.

e is a circular disk or wheel, sustained on plate A by a pivot pin or screw, d, so as to turn freely, and formed with a groove, c, of volute form, extending from the pivot d to near the outer edge of the wheel. The regulator-arm b has its outer end bent to engage the groove c, so that as the wheel is turned the arm is moved to and from the center pin, d, by the engagement of the arm with the slot.

On plate A is fixed a pointer, f, and the rim of wheel e is toothed or serrated for the purpose of guiding the adjustment of the wheel with reference to the pointer.

The operation may be readily seen. The movement of arm b effects the regulation in the usual manner, and by the addition of the grooved wheel the arm can be moved to a slight degree and with uniformity not possible by hand. The pointer indicates on the wheel the movements of the arm to a fine degree, so that the most accurate adjustment can be obtained. The eccentric groove e is so constructed that by turning the disk c a certain number of degrees the rate of the watch will be increased or diminished a certain number of seconds per day. For example, if the watch be gaining six seconds per day, turn the disk c two degrees toward the slow side of the indicator f, and the error in the rate of the watch will be corrected without further experiment—in this case two degrees corresponding with six seconds of variation.

I am aware that it is not now to use an arm projecting from the side of the indicating-lever and provided with two pins working in a spiral groove; but I simply project the end of my lever into a curved groove, (which does not lap upon itself,) so as to give an easy movement as well as a positive action.

What I claim as new and of my invention is—

The combination, with the watch-plate A, the regulator-arm b, having a bent outer end, and the pointer f, of the notched disk or wheel e, supported on plate A by a pivot screw or pin, d, and provided with a volute groove, c, extending from the pivot to near the outer edge of the wheel, and adapted to operate the regulator-lever positively in both directions, as and for the purpose specified.

JOSIAH PERCY STEVENS.

Witnesses:

L. O. STEVENS,

A. B. HARLOW.